

Brainboxes Limited, 18 Hurricane Drive, Liverpool International Business Park, Speke, Liverpool,

Merseyside, L24 8RL
Tel: +44 (0)151 220 2500 Fax: +44 (0)151 252 0446

www.brainboxes.com | sales@brainboxes.com | support@brainboxes.com

Using Modbus TCP with Brainboxes products

Contents
1 Scope of this document .. 2

2 What is Modbus TCP? ... 2

3 Modbus TCP settings on Brainboxes webpage ... 3

4 Logical addressing ... 5

5 984 style addressing .. 5

6 IEC 61131 addressing .. 5

7 Modbus 1.1b3 standard addressing ... 6

8 Modbus data formats ... 6

9 Product data tables ... 7

9.1 ED-588 ... 7

9.2 ED-516 ... 7

9.3 ED-538 ... 7

9.4 ED-527 ... 8

10 Worked example ... 8

This manual applies to the following Ethernet I/O products:

Brainboxes Limited, 18 Hurricane Drive, Liverpool International Business Park, Speke, Liverpool,

Merseyside, L24 8RL
Tel: +44 (0)151 220 2500 Fax: +44 (0)151 252 0446

www.brainboxes.com | sales@brainboxes.com | support@brainboxes.com

1 Scope of this document
This document describes the implementation of the Modbus TCP protocol with the Brainboxes

Ethernet I/O (ED) product range. The document will explain what the protocol is, how it works and

how to use it with Brainboxes ED range.

2 What is Modbus TCP?
Modbus Protocol is a messaging structure developed by Modicon in 1979. It is used to establish

master-slave/client-server communication between intelligent devices. It is a de facto standard, truly

open and the most widely used network protocol in the industrial manufacturing environment. It has

been implemented by hundreds of vendors on thousands of different devices to transfer

discrete/analog I/O and register data between control devices.

TCP/IP is the most common transport protocol used over the Internet which is actually a set of

layered protocols, providing a reliable data transport tool between machines.

Combining a widespread physical network (Ethernet) with a universal networking standard (TCP/IP)

and a vendor-neutral data representation, Modbus gives a truly open, accessible network for

exchange of process data.

Modbus TCP/IP has become so popular due to its openness, simplicity, low-cost development, and

minimum hardware required to support it.

The Modbus protocol is located within the seventh layer of the OSI model, the application layer.

Modbus allows client/server communication between devices connected on different types of buses

and networks.

Brainboxes Limited, 18 Hurricane Drive, Liverpool International Business Park, Speke, Liverpool,

Merseyside, L24 8RL
Tel: +44 (0)151 220 2500 Fax: +44 (0)151 252 0446

www.brainboxes.com | sales@brainboxes.com | support@brainboxes.com

Modbus is a request/reply protocol and offers services specified by function codes.

Modbus function codes are elements of Modbus request/reply PDUs.

There are currently three implementations of Modbus:

 TCP/IP over Ethernet.

 Asynchronous serial transmission over a variety of media (wire: EIA/TIA-232-E, EIA-422,

EIA/TIA-485-A; fiber, radio, etc.) Not implemented in our products.

 Modbus PLUS, a high speed token passing network. Not implemented in our products.

A communicating system over Modbus TCP/IP may include different types of device:

 A Modbus TCP/IP Client and Server devices connected to a TCP/IP network

 The Interconnection devices like bridge, router or gateway for interconnection

between the TCP/IP network and a serial line sub-network which permit

connections of Modbus Serial line Client and Server end devices.

3 Modbus TCP settings on Brainboxes webpage
Brainboxes ED products by default are configured to use the ASCII protocol. To enable the Modbus

protocol instead, the user must access the webpage for their device. The webpage for our Ethernet

I/O products can be accessed by simply entering the IP address of the device in to the URL bar in

your web browser. Here is an example:

If you wish to directly access the protocol page straight away so that you can configure the Modbus

settings of your device quickly, you can enter the following in to the URL bar:

192.168.0.62/#/protocol

Note: The IP address listed here is purely an example. The user will need to enter the IP address

of their device, this may have been set automatically by a DHCP server on the users network, be the

factory default address of 192.168.127.254 or may been previously set the user via the device

webpage to a preferred value.

Once the user has accessed the Modbus protocol page for their device, they will have the option to

configure:

 TCP Port (default setting = 502)

 Idle Timeout value (default setting = 0)

 Number of Max Connections (default setting = 8)

One last thing which the user must ensure is that the Current Protocol drop down tab is set to

Modbus TCP and not ASCII mode.

http://192.168.0.62/#/protocol

Brainboxes Limited, 18 Hurricane Drive, Liverpool International Business Park, Speke, Liverpool,

Merseyside, L24 8RL
Tel: +44 (0)151 220 2500 Fax: +44 (0)151 252 0446

www.brainboxes.com | sales@brainboxes.com | support@brainboxes.com

The image below is an example of the Modbus protocol page for an ED-588:

The TCP port is a 16 bit number, 1 – 65535, used to identify the services or processes being used in

networking communications. Specific port numbers are often used to identify specific services. By

convention, TCP port 502 is used by the Modbus protocol.

When the Idle Timeout is set, if there is no communication to the device for the specified period of

time (in seconds), the connection will be closed. The default idle connection is 0, meaning the

connection will never be dropped automatically.

The Max Connections field allows the user to select the maximum amount of simultaneous

connections which can be made to their ED device at any one time. This field accepts any values

between 1 (minimum) and 8 (maximum).

Brainboxes Limited, 18 Hurricane Drive, Liverpool International Business Park, Speke, Liverpool,

Merseyside, L24 8RL
Tel: +44 (0)151 220 2500 Fax: +44 (0)151 252 0446

www.brainboxes.com | sales@brainboxes.com | support@brainboxes.com

4 Logical addressing
Within the messages passed between Modbus devices, the addresses for registers, coils and inputs

are always two-byte values, which can express values from 0 to 65535. Each of the types of

addressable object (coils, discrete inputs, holding registers and input registers) have their own

independent “address space”: there can be a coil with address 123 and a holding register with

address 123, and there is no relationship implied between them. So when using logical addressing,

the type of object/access type always has to be stated as well. A logical address may be written as a

decimal or a hexadecimal number: we write them as hexadecimal, indicated by a ‘0x’ prefix.

5 984 style addressing
Modbus started life as a proprietary standard based on a family of programmable controllers, and

the addressing notation from the early version of this standard, although now officially superseded,

is still widely used. It is often called 984 addressing, after the model of programmable controller

which popularised it. In this address notation, the address is always written in decimal, with an

offset of 1 from the logical address. It is then padded out with leading zeroes to 4 digits (so logical

address 20 becomes 0021), and then a prefix digit is added to indicate which address space is to be

used, making a 5-digit written address. So, logical address 20 would become 00021 if it referred to a

coil address, 10021 if it was a discrete input, 30021 for an input register or 40021 for a holding

register. You may also see 4-digit or 6-digit versions of this scheme.

984 addresses Type Logical addresses

00001-09999 Coil 0-9998 (decimal)
0x0000-0x270E (hexadecimal)

10001-19999 Discrete input 0-9998 (decimal)
0x0000-0x270E (hexadecimal)

30001-39999 Input register 0-9998 (decimal)
0x0000-0x270E (hexadecimal)

40001-49999 Holding register 0-9998 (decimal)
0x0000-0x270E (hexadecimal)

The prefix digit is sometimes used as shorthand for the type of access: ‘0x’ referring to coils (not to

be confused with the 0x which indicates a hexadecimal number!), ‘1x’ referring to discrete inputs,

‘3x’ referring to holding registers, and ‘4x’ referring to input registers.

6 IEC 61131 addressing
Programmable controllers and HMIs often use the IEC 61131 standard for referring to internal 1-bit

values (%M0, %M1, …) and 16-bit values (%MW0, %MW1, …). This notation is sometimes also

applied to Modbus addressing, with the %M0, %M1, … addresses referring to Modbus coils, and the

%MW0, %MW1, … addresses referring to Modbus holding registers. There is no way in this scheme

to represent the read-only types.

IEC 61131 addresses Type Logical addresses

%M0-%M65535 Coil 0-65535 (decimal)
0x0000-0xFFFF (hexadecimal)

N/a Discrete input Not accessible in this format

N/a Input register Not accessible in this format

%MW0 - %MW65535 Holding register 0-65535 (decimal)
0x0000-0xFFFF (hexadecimal)

Brainboxes Limited, 18 Hurricane Drive, Liverpool International Business Park, Speke, Liverpool,

Merseyside, L24 8RL
Tel: +44 (0)151 220 2500 Fax: +44 (0)151 252 0446

www.brainboxes.com | sales@brainboxes.com | support@brainboxes.com

7 Modbus 1.1b3 standard addressing
If you download the latest version (1.1b3) of the Modbus standard, you will find that it uses yet

another addressing style. In what it calls the “Modbus data model”, the address of each object

starts at 1, i.e. it is the logical address plus 1. You can see in the examples that the object addresses

are always 1 greater than the values actually transferred in Modbus data packets. Like the logical

address, an address written this way does not specify what is being addressed; the type of

object/access needs to be stated as well.

Modbus data model addresses Type Logical addresses

1-65536 Coil
(1 bit)

0-65535 (decimal)
0x0000-0xFFFF (hexadecimal)

1-65536 Discrete input
(1 bit)

0-65535 (decimal)
0x0000-0xFFFF (hexadecimal)

1-65536 Input register
(16 bit)

0-65535 (decimal)
0x0000-0xFFFF (hexadecimal)

1-65536 Holding register
(16 bit)

0-65535 (decimal)
0x0000-0xFFFF (hexadecimal)

8 Modbus data formats
Modbus uses the concept of a data table to refer to data. A data table is an array or block of

memory used to store data. Data is referenced using data table addresses. Modbus data table

addresses come in four types:

 Discrete inputs – Represent a single bit (Boolean) which can only be read. In other words,

the client can only perform a read action on the discrete inputs.

 Coils - These are read-write Boolean values. They are typically used to represent outputs or

internal bits which are both read by and written to by the user.

 Input registers - These are read only 16 bit integers. They are typically used to represent

analogue input values and other integer values which are read but not written to by the

user.

 Holding registers - These are read-write 16 bit integers. They are typically used to represent

analogue outputs or internal numbers which are both read by and written to by the user.

Brainboxes Limited, 18 Hurricane Drive, Liverpool International Business Park, Speke, Liverpool,

Merseyside, L24 8RL
Tel: +44 (0)151 220 2500 Fax: +44 (0)151 252 0446

www.brainboxes.com | sales@brainboxes.com | support@brainboxes.com

9 Product data tables

9.1 ED-588

 Modbus access
type

Modbus
function
codes

Logical
address

984 style
address

IEC 61131 address

Read digital inputs Coil 1 0x0020 – 7 00033 – 40 %M32 – 39

Read digital inputs Discrete input 2 0x0000 – 7 10001 – 8 N/A

Read digital inputs Input register 4 0x0020 30033 N/A

Read DI counter values Input register 4 0x0000 – 7 30001 – 8 N/A

Read DI counter values Holding register 3 0x0000 – 7 40001 – 8 %MW0 – 7

Clear DI counters Coil 5, 15 0x0200 – 7 00513 – 20 %M512 – 19

Set/read digital outputs Coil 1, 5, 15 0x0000 – 7 00001 – 8 %M0 - 7

Set/read digital outputs Holding register 3, 6, 16 0x0020 40033 %MW32

Output overload flags Discrete input 2 0x0400 – 7 11025 – 32 N/A

Output overload flags Input register 4 0x0400 31025 N/A

9.2 ED-516

 Modbus access
type

Modbus
function
codes

Logical
address

984 style
address

IEC 61131 address

Read digital inputs Coil 1 0x0020 – F 00033 – 48 %M32 – 37

Read digital inputs Discrete input 2 0x0000 – F 10001 – 16 N/A

Read digital inputs Input register 4 0x0020 30033 N/A

Read DI counter values Input register 4 0x0000 – F 30001 – 16 N/A

Read DI counter values Holding register 3 0x0000 – F 40001 – 16 %MW0 – 15

Clear DI counters Coil 5, 15 0x0200 – F 00513 – 28 %M512 – 27

9.3 ED-538

 Modbus access
type

Modbus
function
codes

Logical
address

984 style
address

IEC 61131 address

Read digital inputs Coil 1 0x0020 – 7 00033 – 40 %M32 – 39

Read digital inputs Discrete input 2 0x0000 – 7 10001 – 8 N/A

Read digital inputs Input register 4 0x0020 30033 N/A

Read DI counter values Input register 4 0x0000 – 7 30001 – 8 N/A

Read DI counter values Holding register 3 0x0000 – 7 40001 – 8 %MW0 – 7

Clear DI counters Coil 5, 15 0x0200 – 7 00513 – 20 %M512 – 19

Set/read digital outputs Coil 1, 5, 15 0x0000 – 3 00001 – 4 %M0 – 3

Set/read digital outputs Holding register 3, 6, 16 0x0020 40033 %MW32

Output overload flags Discrete input 2 0x0400 – 3 11025 – 8 N/A

Output overload flags Input register 4 0x0400 31025 N/A

Brainboxes Limited, 18 Hurricane Drive, Liverpool International Business Park, Speke, Liverpool,

Merseyside, L24 8RL
Tel: +44 (0)151 220 2500 Fax: +44 (0)151 252 0446

www.brainboxes.com | sales@brainboxes.com | support@brainboxes.com

9.4 ED-527

 Modbus access
type

Modbus
function
codes

Logical
address

984 style
address

IEC 61131 address

Set/read digital outputs Coil 1, 5, 15 0x0000 – F 00001 – 16 %M0 – 15

Set/read digital outputs Holding register 3, 6, 16 0x0020 40033 %MW32

Output overload flags Discrete input 2 0x0400 – F 11025 – 40 N/A

Output overload flags Input register 4 0x0400 31025 N/A

10 Worked example

10.1 Writing a single coil
In this example we are sending Modbus commands to write single bits to an ED-527 which are either

high or low.

To write a single bit as either high or low, we use the Write Single Coil function code: 05

The data value of 0x0000 to output the bit as low.

The data value of 0xFF00 to output the bit as high.

The ED-527 has its 16 output register addresses starting at 0x0001 through to 0x0010.

To set the bit low in register 1, the Modbus packet will look like this:

0017 0000 0006 FF 05 0001 FF00

This packet is broken down in to the following fields:

TrID Prot Len UI Fn Addr Data

0017 0000 0006 FF 05 0001 FF00

 TrID: Transaction ID.

 Prot: Is the protocol which is always 00 for Modbus TCP.

 Len: Is the number of bytes in the rest of the transaction.

 Fn: Is the Modbus function code for writing a single coil: 05

 Addr: Is the address of the Modbus register of which we are setting the I/O state.

 Data: Is the data we are writing. 0x0000 sets the bit low and 0xFF00 sets the bit high.

